2,936 research outputs found

    Inferring bulk self-assembly properties from simulations of small systems with multiple constituent species and small systems in the grand canonical ensemble

    Full text link
    In this paper we generalize a methodology [T. E. Ouldridge, A. A. Louis, and J. P. K. Doye, J. Phys.: Condens. Matter {\bf 22}, 104102 (2010)] for dealing with the inference of bulk properties from small simulations of self-assembling systems of characteristic finite size. In particular, schemes for extrapolating the results of simulations of a single self-assembling object to the bulk limit are established in three cases: for assembly involving multiple particle species, for systems with one species localized in space and for simulations in the grand canonical ensemble. Furthermore, methodologies are introduced for evaluating the accuracy of these extrapolations. Example systems demonstrate that differences in cluster concentrations between simulations of a single self-assembling structure and bulk studies of the same model under identical conditions can be large, and that convergence on bulk results as system size is increased can be slow and non-trivial.Comment: Accepted by J. Chem. Phy

    Development of an orthotropic hole element

    Get PDF
    A finite element was developed which adequately represents the state of stress in the region around a circular hole in orthotropic material experiencing reasonably general loading. This was achieved with a complementary virtual work formulation of the stiffness and stress matrices for a square element with center circular hole. The assumed stress state provides zero shearing stress on the hole boundary, so the element is suitable for problems involving load transfer without friction. The element has been implemented in the NASTRAN computer program, and sample problem results are presented

    Evaluating Wildlife Vulnerability to Mercury Pollution From Artisinal and Small-Scale Gold Mining in Madre de Dios, Peru

    Get PDF
    “Illegal, artisanal and small-scale gold mining (ASGM) often occurs in remote highly biodiverse areas, such as the Madre de Dios region of Peru. Mercury used in gold mining bioaccumulates in the environment and poses developmental, hormonal, and neurological threats to wildlife. The impact of ASGM on biodiversity remains largely unknown. We used geographic information science to create a spatial model of pollution risk from mining sites, in order to predict locations and species assemblages at risk. Multicriteria evaluation was used to determine how flow accumulation, distance from mining areas, total suspended sediment load, and soil porosity influenced the vulnerability of regions to mercury pollution. Results suggest that there is considerable opportunity for protection of areas with high biodiversity and vulnerability north of the Madre de Dios River where much of the land is not protected. Our study highlights the need for future ASGM research to consider more than deforestation risk alone while protecting the areas’ unmatched biodiversity.

    Incorporating spatial correlations into multispecies mean-field models

    Get PDF
    In biology, we frequently observe different species existing within the same environment. For example, there are many cell types in a tumour, or different animal species may occupy a given habitat. In modeling interactions between such species, we often make use of the mean-field approximation, whereby spatial correlations between the locations of individuals are neglected. Whilst this approximation holds in certain situations, this is not always the case, and care must be taken to ensure the mean-field approximation is only used in appropriate settings. In circumstances where the mean-field approximation is unsuitable, we need to include information on the spatial distributions of individuals, which is not a simple task. In this paper, we provide a method that overcomes many of the failures of the mean-field approximation for an on-lattice volume-excluding birth-death-movement process with multiple species. We explicitly take into account spatial information on the distribution of individuals by including partial differential equation descriptions of lattice site occupancy correlations. We demonstrate how to derive these equations for the multispecies case and show results specific to a two-species problem. We compare averaged discrete results to both the mean-field approximation and our improved method, which incorporates spatial correlations. We note that the mean-field approximation fails dramatically in some cases, predicting very different behavior from that seen upon averaging multiple realizations of the discrete system. In contrast, our improved method provides excellent agreement with the averaged discrete behavior in all cases, thus providing a more reliable modeling framework. Furthermore, our method is tractable as the resulting partial differential equations can be solved efficiently using standard numerical techniques

    Customer Rights Under the Commodity Exchange Act

    Get PDF
    This Article reviews customer rights and remedies now available under the CEA. Specifically, part II of this Article explores the scope of transactions covered by the CEA, part III addresses the antifraud provisions of the CEA, and part IV discusses the standard of intent required to prove that fraud has been committed under CEA provisions. Part V of this Article examines the secondary liability of brokerage firms and others for the fraudulent acts of its employees, part VI discusses fiduciary liability under the CEA, and part VII enumerates the various forums available for customer remedies. This Article concludes in part VIII with suggestions for improving dispute resolution in the commodity industry

    Teaching Junior Medical Students About the Current Health Care System

    Get PDF
    No abstract available

    Local flow management/profile descent algorithm. Fuel-efficient, time-controlled profiles for the NASA TSRV airplane

    Get PDF
    The Local Flow Management/Profile Descent (LFM/PD) algorithm designed for the NASA Transport System Research Vehicle program is described. The algorithm provides fuel-efficient altitude and airspeed profiles consistent with ATC restrictions in a time-based metering environment over a fixed ground track. The model design constraints include accommodation of both published profile descent procedures and unpublished profile descents, incorporation of fuel efficiency as a flight profile criterion, operation within the performance capabilities of the Boeing 737-100 airplane with JT8D-7 engines, and conformity to standard air traffic navigation and control procedures. Holding and path stretching capabilities are included for long delay situations

    Survival of entanglement in thermal states

    Full text link
    We present a general sufficiency condition for the presence of multipartite entanglement in thermal states stemming from the ground state entanglement. The condition is written in terms of the ground state entanglement and the partition function and it gives transition temperatures below which entanglement is guaranteed to survive. It is flexible and can be easily adapted to consider entanglement for different splittings, as well as be weakened to allow easier calculations by approximations. Examples where the condition is calculated are given. These examples allow us to characterize a minimum gapping behavior for the survival of entanglement in the thermodynamic limit. Further, the same technique can be used to find noise thresholds in the generation of useful resource states for one-way quantum computing.Comment: 6 pages, 2 figures. Changes made in line with publication recommendations. Motivation and concequences of result clarified, with the addition of one more example, which applies the result to give noise thresholds for measurement based quantum computing. New author added with new result

    An investigation of TNAV equipped aircraft in a simulated en route metering environment

    Get PDF
    This document presents the results of an effort to estimate how often a TNAV (Time Navigation) equipped aircraft could be given a TNAV clearance in the En Route Metering (ERM) system as a function of the percentage of arriving traffic which is TNAV equipped. A fast-time simulation of Denver Stapleton international arrival traffic in the Denver Air Route Traffic Control Center route structure, including en route metering operations, was used to develop data on estimated conflicts, clearance communications and fuel usage for traffic mixes of 25, 50, 75 and 100% TNAV equipped. This study supports an overall effort by NASA to assess the benefits and required technology for using TNAV-equipped aircraft in the ERM environment
    corecore